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ABSTRACT

We study the functional errors-In-variables regression model. In

the case of no equation error (all randomness due to measurement

errors), the maximum likelihood estimator computed assuming

normality is asymptotically better than the usual moments estimator,

even if the errors are not normally distributed. For certain

statistical problems such as randomized two group analysis of

covarianee, the least squares estimate is shown to be better than

the aformentioned errors-in-variables methods for estimating certain

important contrasts.
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1. Introduction

The problem of estimating linear regression parameters when the variables are

subject to measurement or observation error has a long history and has

recently been the focus of considerable attention. Reilly and Patino-Leal

(1981) list a number c1 recent publications concerning situations in which

the problem arises; see Wu, Ware and Felnlieb (1980) for a simple but

particularly interesting example in a biomedical context. Blomqulst (1977),

Nussbaum (1980), Fuller (1980) and Gleser (1981) have recently addressed

various theoretical aspects of the problem.

The purposes of this paper are three. First, by exploiting a particular

representation of estimators we unify and extend some of the asymptotic

results for the normal theory maximum likelihood estimator (normality-MLE)

and the "method of moments" estimators developed by Fuller (1980). Second,

having obtained the asymptotic distributions of the method of momemts

estimators and the normality-MLE, we are in a position to compare the two via
limiting variances. In a particular important special case, we are able to

show that the normality-MLE is better than the method of moments estimator in

the sense of having an asymptotic normal distribution centered about the true
regression parameter and with smaller asymptotic variance. This is perhaps

not too surprising at the normal model, but it in fact holds even if

assumptions of normality are violated. Our Monte-Carlo study confirms this
result, but we also discuss reasons why one would want to use the method of
moments estimator in practice, especially when using Fuller's small sample

modification.

The third major purpose of this paper is to study the least squares estimator

(LSE), computed as if the variables were observed exactly. The LSE is A

generally inconsistent for regression parameters, and thus has not been

considered much in the literature. This is unfortunate because, as has not

been generally recognized, there are important statistical problems in which
the LSE is consistent; one example is two-group analysis of covariance for a

iz
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randomized study, where the LSE consistently estimates the treatment effect

difference even when there are errors in the variables. A heuristic

asymptotic result suggests that when the LSE is consistent for a particular

contrast, it will be better than the nonmality-MLE in large samples. The

conjecture is explicitly confirmed for two group analysis of covariance. Our

small Monte-Carlo study is illuminating here.

There are two other features of the paper which are important. First, to the

best of our knowledge the Monte-Carlo results are among the first of their

kind for the errors-in-variables problems we consider, although Wolter and

Fuller (1982 a,b) have Monte-Carlo as well. Second, the Monte-Carlo study
includes recently introduced generalizations of M-estimates (Carroll and

Gallo (1982)), which we show to work quite well.

2. Models, Assumptions and Estimates

We consider a general errors-in-variables (EIV) regression model in which

some subset of the variables is subject to error, while some are observed

exactly; the response is replicated s times and the predictor variables

subject to measurement error are replicated r times. Specifically,

Y = X1 01 + X2 82 + 61

6 + V1  i = 1, ... , s

C- X2 + U, ... , r.

Here, 81 is a (p, x 1) vector and 02 is (P2 x 1), p p1 + p2. The vectors

Yi, 6, and V1 are of dimension (N x 1), where N is the sample size in the

study. X1 and X2 are constant matrices of order (N x pl) and (N x P2
) ,

respectively. X1 is observable, however, because of measurement error Uj X2

is not observable but rather the (N x p2 ) matrices C are observed. The

(N x 1) random vector 6 is called the equation error, while the (V P are the

measurement errors in the response. The assumption that X, and X2 are

constant puts us in the functional EIV model. In some cases we will assume

• -- - - m - -m m l lwm
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no equation error (a 0), in which case we have the classical linear

functional relationship. The concept of equation error was introduced by

Fuller (1980).

We assume that the (Vi} are mutually independent and independent of 6 as are

the {U ). The elements of 6 and those of each Vi are i.i.d. with zero mean

and finite variances a 2 and av2 respectively, while the rows of each Uj are

i.i.d. with mean zero and non-singular covariance matrix Zu" We define

2 a 2 2
0= 0v

x = X1 X2)

and assume that X is of full column rank such that

lim N 1 X X is positive definite. (2.1)

We further define

uJ*= L 0 U.Ia)s 2 C* Euj.= o u] B =[8 8 ] cj.=Lx1 cj)K x Pl

ELI* = [A A=[i
Where A11 and the upper left-hand submatrix of zeroes in Eu. are (p1 x pl).

We will discuss a number of special cases of our EIV model and define an

estimator of 8 in each.

Case No. 1 (No replication) Gleser (1981) and the majority of researchers

assume no replication is available (r = s - 1). Here; we suppress the

subscripts referring to the replicates and write Y, c, C, etc. We assume

that the rows of [U el have finite fourth moments and that a matrix X 0is

known_ such that

- -4. I
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S2z o LC'uo ; (2.2)

we define to*, zuo* zcuo* correspondingly.

With 1N the identity matrix of order N, write

R = IN - XI ( x 1 )' Xi

W = [C Y] R [C Y].

Let e be the smallest etgenvalue of To W. If C! C. - e Xo* is non-singluar
(Gallo (1982b) has shown that this holds a.s. if the error distribution is

absolutely continuous), we define

M= (C C. - e E (;Y uo. (2.3)

This estimate is the maximum likelihood estimate for jointly normally

distributed errors (note: if we omit assumption (2.2), the supremum of the

"2"ihood is infinite). The estimate was derived in a more general

framework by Healy (1975) and was shown by Gleser (1981) to be equivalent to

a generalized weighted least squares estimate. We emphasize that we will

study (2.3) and the other estimates of 8 without assuming normality.

Case No. 2 (Equal replication) Here we let s = r > 1. The equal

replication is converient since it admits simpler notation, but it is by no

means necessary. It does arise in practical circumstances. For example, if

one predictor is baseline diastolic blood pressure the response is change in

diastolic blood pressure, as in the Framingham Heart Study of the National

Heart, Lung and Blood Institute and in other studies, a common practice is to

take one replicate, i.e., r - s a 2. A oethod of moments estimator motivated

by the work of Fuller (1980) is

r r -1 r r. V zz z(2.4)

OR X 1 Ci* Ck*)- E r C i*Yk(24
j Iik-kl J-3,k k-1

. ... d
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We assume that the random matrices 6, [c U1],.... er "r] are mutually

independent and that the other specifications of Case No. 1 hold. (The

normality-MLE has not been calculated for a case such as this in which 6 • o).

Case No. 3 (Equal replication, no equation error) This is the same situation

as in Case No. 2 except that 6 = 0, i.e., apart from measurement error the

underlying relation is exactly linear.

Let eR be the smallest eigenvalue of T]
1 T2 , where

r r ] -1
= [Ci Y (6ij - r ) IN [Cj YJ]

i=1 J=1

r r
T = TI + r ( [C1 Y ]') R ( C [ i yi]

1=1 1=1

(6,j is the Kronecker delta, the indicator of i = j). Then with

mtj = (r (eR - ) 6j -eR)

we define

r r r r
O1R = ( C k X E mJk C. k (2.5)

J=1 k=1 J=1 k=1

This is the normality-MLE in the replication case, and has been derived by

Anderson (1951) and Healy (1980). Note that assumption (2.2) is unnecessary

here.

The estimates in all cases above have been shown to be consistent for B as

N.-; conditions on X weaker than (2.1) were obtained by Gallo (1982b).

In Case No. 2, B has been shown by Fuller (1980) to have a limiting normal

distribution when U and c are normally distributed; under non-normality,

Fuller (1975) has some related results, although our proofs are different.

The MtLE in Case No. 1 was demonstrated by Gleser (1981) to be asymptotically

. . -. ... lil -l _ ' _ -- I I I i _ _ _ _ _ _'--_-
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normal, but the proof contains a slight error. (In particular, Gleser's Lemma

4.1 is contradicted by the following example: let {yk ) be a sequence of

independent random variables assuming values - 2k2 , 2  with probabilities

k 'k1/2 N
2-(k+ l ), 1-2"k, 2- (k+l ), respectively. According to the lemma, N- Z/2

is asymptotically standard nonnal, yet it can be shown that this quant)tl is

O (1).) A simple remedy would require that the errors have finite moments

of order greater than four, an assumption we would like to avoid if possible.

Finally, there are practical problems where it is known in advance that

XCu - 0. In this instance, the estimators (2.3) and (2.5) can be altered to

a form in which they are more efficient. Our main qualitative comparisons

and conclusions (Sections 4-5) are unaffected.

3. Asymptotic Normality

In this section we state the form of the asymptotic distributions of the

estimators. The proofs are technical and are delayed until Section 6.

Theorem 1

(No. 1) In Case No. 1, N1/2 ( -) is asymptotically normally distributed

with mean zero. If the third and fourth moments of the joint distribution

of the rows of U and c are the same as those of the normal distribution then

the asymptotic covariance matrix of N112  - is

Coy V d W 1 + A1 o O]A-1) (3.1)

where

( P2 02 1  (I p2  2') "1 .

• , I



(No. 2) In Case No. 2. N1/2 (R - 8) is asymptotically normally

distributed with mean zero and covariance matrix

Coy (BR) = A 1 (r -  (d-a }A + as (A + r "  u*)

+ r- 1  (r- ) ((d- ) u + DR)) - (3.2)

where

DR = (Eu* 8 - Eeu*) (Eu, B- cu,)'.

(No. 3) In Case No. 3, N1/ 2 (6R - 8) is asymptotically normally

distributed with mean zero and covariance matrix

Cov (8FR) = (dr'1 ) A-I + (r-) 1 A'I[ 0  0iA -1 . (3.3)

Again, note that although two of our three estimates are normality-MLE's, we

do not assume in any part of Theorem 1 that the errors are normally

distributed. The assumption made in part (No. 1) of the theorem that the

error distribution moments are those of the normal distribution is not

necessary for the asymptotic normality of NM; nevertheless, the limit variance

depends on the third and fourth error moments and is in general quite

unwieldy. In stating the theorem we thus assume that the moments are those of

the normal distribution (as did Gleser (1981)) since this yields a concise

expression more easily compared with those of other estimates. We have made

no further assumptions on the errors beyond those of Section 2; in particular,

in Cases No. 2 and 3 we require only two finite moments.

4. Comparisons for the Linear Functional Relationship

We consider in this section Case No. 3, the linear functional relationship

with no equation error. In this case the asymptotic covariances (3.2) and
(3.3) are comparable.

a;P
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Theorem 2 For Case No. 3, (even under non-normal distributions), the

normality-MLE (2.5) is asymptotically no worse than the moment estimator

(2.4), i.e.,

Coy (OR) -Coy (OMR)

is positive semi-definite.

The proof is given in Section 7. However, there is an important special case
2

where the result is obvious, when E Ip2 Then

Coy - Coy (MR) = 2r-  (r-1)-14 a'I B2 82 A' ;

of course, what is most interesting about Theorem 2 is that the normality-MLE

is the (asymptotic) winner over method of moments even at non-normal

distributions. To get some idea of whether this result holds in small

samples, we performed the following Monte-Carlo study.

All calculations were done at the NIH computing center. Random numbers were

generated using the IMSL routines GGNPM and GGUBS. There were 500 Monte-Carlo

replications. The true model was simple linear regression following the

format of Section 2 with r=s=2 replications. The intercept was 10 and the

slope was -4. In the notation of Section 2, X1 is a column vector of N=40

ones, 01 = 10, 02 = -4 and X2 is a column vector obtained as the values of X2

from Table 1 of Jobson and Fuller (1980).

Although the estimates were calculated in the forms which do not assume

zCu 1 O, we fixed £ u a 0 and performed the Monte-Carlo study. The rows of

the error terms S, Vi and Ui were thus generated independently; all three were

either normally distributed or had a contaminated normal distribution. In

general, any random variable was either N(O, a2) (Normal) or N(O, 02) with

probability 0.9 and N(O, c2 a 2 ) with probability 0.1 (Contaminated Normal),

with

0
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Equation Error (6): 2 = 0 or 4, c=5
6

Y Measurement Error (V): a2= 4, c=5

X Measurement Error (): a2 = 1,2 or 4, c=3u

The normality-MLE is calculated assuming 2 0, so the results for
a 4 give some idea of its robustness against this assumption.

The normality-MLE was computed by (2.5). The moments estimator was

(2.4), with exception that the term in (2.4)

r r
Z r C', Ck,

j=1 k=1
j*k

was replaced by Fuller's modification (Fuller, (1980), page 414-415) using

Fuller's a=1. This modification is crucial to get the best performance of the

moments estimator. Although this modification occurs with negligible

probability asymptotically, we found in our study that it occurred often.

Finally, we studied a generalization of the moments estimator (2.4) introduced

by Carroll and Gallo (1982) and designed to be robust against departures from

normality in 6 and V. If Fuller's modification was necessary, we used his

estimator. Otherwise, we solved

N

i=1 12 Y11-61-62 Zi

a (4.1)

+ Z ' Y12-01-'2 Z12

0

where (Z1j} are the individual elements of C and a is the median absolute

residual from the moments fit divided by .6745. It is easy to solve (4.1) by

r -. S
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Iteratively reweighted least squares, although some care must be taken. To

this date there is no estimator with distributional robustness properties

which includes as a special case the normality-MLE, although such an estimator

will surely be soon discovered. For Case No. 1, Brown (1982) has suggested

such a class, but his proof of consistency is in error and his estimator is

not consistent and asymptotically normal in general.

Mean square error (MSE) efficiencies relative to the normality-MLE are given

in Table 1, aloihg with the percentage of times Fuller's modification was used.

Efficiencies are also given in Table 2 for the 95th percentile of the absolute

errors for the different estimators. The first twelve lines of each table are

for the situation of no equation error (6 =0 = o), assumed in calculating

the normality MLE. Note as suggested by Theorem 2 that the normality-MLE

generally dominates the moments estimator (but not vastly so), even at non-

normal distributions. The Carroll-Gallo estimator is generally the best, even

when compared to the normality-MLE and even though it is meant to improve the

moments estimator, not the normality-MLE. The Carroll-Gallo estimator does

lose some efficiency when the measurement error in X2 becomes very large; this

is a reflection of the fact that the "asymptotically negligible" Fuller

modification is needed 30%-50% of the time. Clearly, it would be helpful to

have a distribution-robust generalization of the normality-MLE. Further work

should also focus on bounded influence (Carroll and Gallo (1982) make one

simple suggestion along these lines).

The last twelve lines of Tables 1 and 2 reflect the situation = 4 i
there is substantial equation error. Here the normality-MLE calculated

assuming a = 0 does particularly poorly. Clearly, the normality-MIE is not

robust against violations of the linear functional relationship (no equation

error). Certainly, the Monte-Carlo suggests the need for calculation and

study of the normality-MLE in the general Case No. 2. In the absence of such

a general estimator, we would in practice favor the moments estimator (2.4)

with Fuller's modification over the estimator (2.5), especially for small

.

___________
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samples or if substantial equation error is a possibility. Wolter and Fuller

(1982 a,b) also present Monte-Carlo which emphasizes that the moments

estimator can be superior in practice.

We consider the results for the Carroll-Gallo estimator to be very

encouraging, but further development is clearly needed. On an interim basis,

our estimators should be considered a supplement to and not a replacement for

Fuller's modified tWME.

5. Comparisons with the Least Squares Estimator

It is well-known that the ordinary least squares estimate computed as if the

observed values C. were the exact values of interest,

sL = (C! C.) " C. Y,

is inconsistent for B in EIV models. There are, however, situations in which

least squares can consistently estimate particular parameters of interest.

One such situation is two-class analysis of covariance. (DeGracle and Fuller

(1972) considered this situation in an EIV context). The most important

parameter is often the treatment difference; it turns out that this is

consistently estimated by least squares as long as subjects are assigned to

treatments in such a way that the difference between the treatment means of

the covariate approaches zero, as would occur in a randomized or matched

study. More generally, Gallo (1982a) has shown

Theorem 3 Let y' = Eyl' y2 ']. where Y, is a (p1 x 1) vector and Y2 is a

(P2 x 1) vector. Then

P
Y' + Y' for all 8, E iff

(5.1)1 "
. ..jA 11  12'

47-4'*A
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The advantage of such consistent contrasts is that we can consistently

estimate important parameters without needing replication or the often

artificial assumption (2.2). The LSE can only be considered if it is as good

an estimator as the Ell methods such as (2.3) - (2.5).

For example, first consider Case No. 1. General comparison of OL and 8IA turns

out to be difficult in our model, because the limit distribution of 8L is not
easily calculated. The following heuristic calculations are informative.
Suppose

NI/2 (y (Xi Xi) -1 Xi X2 - yP) -0 ; 
(5.2)

(this implies (5.1)). Then

Theorem 4 Under (5.2), N1/2 y' (6L - 8) is asymptotically normal with mean

zero and covariance Coy (' y). Further,

Coy ( L' Y ) < Y ' Coy ( ) y, (5.3)

i.e., the LSE has no larger asymptotic variance then the normality-MLE.

Equality holds if and only if u= u 2"

The proof of Theorem 4 is in Section 7. Since (5.2) cannot be guaranteed, the

relevance of Theorem 4 is heuristic. For example, in the ANOCOVA example

mentioned previously, (5.2) implies that the true mean covariable difference

(is o which is not assured even if the observed means are set equal

for all N. The Monte-Carlo reported later supports Theorem 4, but other

theoretical calculations are also possible.

Consider balanced two-class analysis of covariance such as might occur in a

randomized study. In the notation of Section 2.

4I V
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Xi .. 1..... -

(5.3) X= z 1 Z2 . . . . . .  ZN

The parameter of interest is a = (0 1 0) 8. If the design is actually
2

randomized, the {Z) would be i.i.d. with mean pz and variance o2
. This is

not our functional model because X2 is not a vector of fixed constants,

nevertheless Theorem 1 is true in this instance. Denoting the estimates of a

by 0L' aM' oR-and "MR for the LSE and (2.3) - (2.5) respectively, one can use

Theorem 1 to prove that aL is always as least as good asymptotically as the

others. If by an appropriately standardized version of a we mean N (a -a),

then

Theorem 5 Appropriately standardized, in either Case No. 1 or Case No. 3, the

LSE aL always has smaller asymptatic variance than a, , or NMR"

Theorem 5 seems to imply that in such randomized studies, one is better off

not using EIV techniques. Also, in terms of inference, detailed calculations

enable one to prove

Theorem 6 Consider Case No. 1 (this result holds for Case No. 3 as well).

/ ( -a) is asymptotically normal with mean zero and variance 2 Let ;2

be the usual estimate of the variance of N
112 (.L - a). Then

^2 P 2
OL  * OL •

Thus, while errors-in-variables make the LSE less efficient, the inferences

one normally makes using the LSE are asymptotically correct for the treatment

effect in randomized two class ANOCOVA.

! : - - -
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We also performed a small Monte-Carlo study of two class ANOCOVA when N=40 and

r=s=2. The random variables for measurement and equation error were generated

as in Section 4, although we only studied the case of no equation error. The

covarlables of (5.3) were normally distributed with mean zero and variance 9.

We chose 0' = (4 4 4) so that a = 4.

In Table 3, for estimating the treatment effect a we report the MSE

efficiencies of the LSE relative to the normality-MLE. The results are

strikingly in accord with Theorem 5.

As seen in Table 3, even when there is no equation error, the LSE is much

better than tie normallty-MLE for estimating the treatment effect, while the

LSE is much worse for estimating the often less important covarlable effect.

The preceeding results apply only to balanced analysis of covariance. If the

covarlates are not balanced across treatments, the LSE will inconsistently

estimate the treatment effect, with possibly disastrous consequences.

6. Proof of Main Result

In proving Theorem 1, we will make use of the following result.

Lemma 1 Let {Xi and {Y) be two sequences of random variables, each i.i.d.
2 2with zero mean, positive finite variances a and oy 2 , respectively, and Coy

(Xi, Yj) = y Let (a ) be a sequence of constants satisfying

1n a 2  2 a2S n"1 a2  a o< a<- (6.1)

1=1

Then with

n nSn2 - x2  r_~ + noy2 + 2o a >0

Sn-l r (a1 X1 + Y1 )

t1i

. . . ..
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converges in distribution to 
a standard normal random variable.

The proof is straightforward, and is contained in Gallo (1982a).

We now outline the proof of Theorem 1. Again, complete details are provided

by Gallo (1982a).

Proof of Theorem 1 Part (i): let

W. = [C. Y] [C Y1

S1 = [IP2 82] ro
"1

S2 (S I [Ip a23 ,) -1 s,
2 ( 1  P 21i

S3 = - S2 [0 81I'.

The following representation is essentially an extension of one obtained by

Gleser (1981):

N1/2 (aM ") = - 1 ] /2 (W*- E (W.)) [8' -1S + op (1)
3 2(6.2)

as long as

(W. - E (W.))(B' -1)' = p (N1/ 2 ). (6.3)

Thus, finding a limit distribution for &, reduces to finding one for the term

in (6.3). Letting

H -[X X81, G = [U. el

with H", G' the ith rows of these matrices, and noting that H [0' -1)' = 0,

for all ye Rp+1 we have
N

y' (W. - E(W.)) [' -1 - E y1 (Hi Gj + Gi Gj - E ) [8' -Il'.
i-I

A e~.tr.. ..rr iW. . . . . . m I i m ! i iI I I ii ! -
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If y' E B' -1], then each y' H1 - 0 and limiting normality follows trivially

since we have a sum of i.i.d. random variables with finite variance. For all

other y,
1- 1 ) 2 = N- 1I ,

N E (y' Hi y'H'Hy + Y [Ip 8' A [p B] y > 0,

and the sequences {G' CO' -1]') and {y' (Gt Gi - 1) [(' -1]') are each

i.i.d. with zero mean and finite variances. Thus, Lemma 1 applies, and after

some algebra we obtain

N "1/2 (W. -E(W.)) - N (0, d ([Ip 8]' AE 8 ] + Z.) +ET.[' -1) [8' -1) L,).
p p

The result (3.1) follows using (6.2), after some more algebra.

Part (ii):
(EE £* 1 C I
11I Ci.' . (isj Ci*' Yj

NI1 2 (6 -8) = N (E E ' 1 .Cj .' 1 N-1 2  J C1 *' (Yj - CjB 0)

r- (r-i1 1 A 1 N 1/ 2 EE Ci*' (Y - .) + o (1)

l*j j cj
as long as

i*j I* (Y Cj ) a (Nl 2 ).
With G a [Uj. Ci] and Ujk.' Xk1, GJkl the Kth rows of Uj., X and Gj ,we have,

for all ye IRp ,

I-E E * (Y N r
Y t*J C* (Y " C* 0) • " klE lir-) Xk JE1 G j + * Uk[' -11'.

1*j * .1 J ~ - k I1 1*j

The sequences ( Z G'i (O' -13') and {y' I I U * G (0' -1)') are each i.l.d.
i-i i*j k j

with zero means and finite variances; also,
N

Z ((r-i) Y Xk)2 N"1 (r-1)2 y'X'Xy * (r-1) 2 y' a y ;
k-1
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thus Lemma 1 applies as before, and the result (3.2) follows.

Part (iii): This is similar to part (i); with H and Gj as in part (i), let

-1 r -r I
T1. r -  (r-1) r G G i - r £ Gi- G i

I=1 i*j

r
T = (H + Gi )' (H + Gi )1=11

Analagously to (6.2), we can obtain the following: if

(T2 .- r(r-l) "1 TI,) [' -1] = Op (NI1 2 )

then

N1 / 2 (rB) = r-' SI FP' O] N_1 /2 (T2*-r(r-I)-I Tl*) [' -1]' + op (1).LS3 S 2 p

For all yE TRp ,

y' (T2  - r(r-1)"1 T1 ,) [W' -1]' =

r H1
y' ( G Gi + (r-1) E E G! G.) ' - •1

Jul i*j t

As before, the sequences

r
{ E Gii B' -I]') and (y' r r GlkGj [' -1)'

11i*j k;

are tli.d., each with zero mean, and the sequence {y' Hk} is just as in part
(1); so the result again follows from Lemma 1.
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7. Other Details

In this section we supply the details of the proofs of Theorems 2 and 4.

Proof of Theorem 2 With 062 0, the limiting covariance matrix of

BR in (3.2) becomes

a- I (r-1 d A + r'1 (r-l) -  (d.u, + DRI) R

Comparing this with (3.3), since DR is positive semidefinite, it will suffice

to show that for all ye rR

' ([ P2 6] Z 1 [ P2 B2]' -  x' _< u Y "  (7.1)

Now since E1 can be expressed as

-1' -11.] + [ ] (02 re E~u £1 reu)-I [ u ru-1

0U U U L U

we have

(I ]E[ 82 -+(02 -r E Q E HE( Ec-p2  2 P 2 ] =u cUu E u cu-211ZulCu-2

[Ip2  a 2 > Y z-1 Y (7.2)

Equation (7.1) now follows immediately from (7.2) and Graybill (1969), Theorem

12.2.14 (5).

Proof of Theorem 4 Recall that

-((C; C.) "1 (C, Y).
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It is easily shown that

N ' *+a u EU*

so

8t (A + E*)- (A$+ Eu*) OL say.

Let

OL6= 2 L = [8~ 2 )

we have

8iL + 1L ,11, 2 (7.3)

Thus for all ye

Y, k = Yj '1L + Y' i2L

Yia + YiB2 + (Y~i1-xx2-P0-2 + Y i(XX 1 )-1X(-U' 2 L)

so if y satisfies (5.2), using (7.3) we obtain

N 1/2 Y.6C8 = N 1 2 Yj (XIXl)-'1 Xi (E-U6 21  + op (1).

It follows that N 12 Y (BL-S) is asymptotically normal, since the elements of

EU2Lare 1 .1.d. with zero mean and finite variance, and the elements of

Yj, (XjX,)-1 Xj satisfy the tNoether condition. Also,

Var (N 1/2 Y X 01Xi ("0U20)

N yj (X 'x1) I Y dL yj ll-' -

with dL * (0t -1) E (Bjt -1Y.

-~~~MV --- 7 -----
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Noting that for y satisfying (5.2)

Y' A 1 Y YTAll 1  
1

we obtain

N1/ 2 y (6L-S) N (0, d ym A y).L L

Now for y satisfying (5.2) the limit variance of in (3.1) becomes d y'A " Y,

so we need only show that dL < d. With

M w A2 2 -A 2 1 All1  A12

q a (M + Eu)'l [zu E ul [0i -1)'

we can, after some algebra show that

d-d. - q' 1 + E) q
which is non-negative for all q since M and Eu are positive

definite; dudL only if q - 0, that is, only if Ecu =

I compl eti ng the proof.I
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TABLE 3

Efficiencies of the LSE Relative to the Normallty-MLE
for the ANOCOVA Experiment

Xu Measurement MSE Efficiency, MSE Efficiency,
Error Distribution a Treatment Effect Covariable Effect

N 1 1.02 0.80

N 2 1.07 0.36

N 4 1.34 0.15

CN 1 1.03 0.65

CN 2 1.16 0.29

CN 4 1.78 0.21

S

!1_ . ....
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